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SUMMARY 

A model for column chromatography that includes non-equilibrated mass 
transfer, diffusion, and generalized boundary conditions at the top of the column is 
solved by the method of moments. The theory predicts that as the macroscopic 
velocity u becomes very small, the plate height approaches a constant (rather than 
diverging as u-l). As u increases, the plate height drops to a minimum and then 
increases. We show that the past assumptions that mass transfer and various types of 
diffusion contribute additively to the plate height, hold only at or beyond the min- 
imum_ We show further that our expression fits observed data with only a sin&e 

adjustable lumped parameter_ The parameter contains the mass transfer rate k _ 1 for 
moving out of a bead. The data fit, as well as an analytical approximation that we 
derive for the position of the minimum, provides a relation between X-_ 1 and bead 
particle size (d,) and consequently between d,, and profile dispersion. Conditions 
under which the peak of the elution profile is a good appro.ximation to the mean are 
described. For a suitably chosen flow-rate, the mass transfer rates can be estimated 
from the observed dispersion in the elution profile. 

MTRODUCTION 

The use of column chromatography as a quantitative tool for molecular weight 
determination’ and chemical reaction characterization’*3 has increased continuously 
and rapidiy during the past decade- However, the basis of its validity for quantitative 
thermodynamic (and perhaps kinetic?) studies is uncertain, resting largely on assump- 
tions that local equilibrium is established instantaneousl$, and that the contribution 
of chemical kinetics to elution profile broadening can be made to dominate the effects 
of d35sion and other none-equilibrium processes4. A general assessment of the range 
of validity of these assumptions has been difficult because of the formidable problems 
in obtaining analytic solutions for the elution profile, even when the mathematical 
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A,C (in units of molecules per unit column length) of solute molecules in the mobile 
phase and the density A,B of solute molecules in the stationary phase. By dividing 
these equations by the initial number of molecules I, the following partial differential 
equations for the probability density p(s,r) for the mobile phase and q(_Q for the 
stationary phase are obtained: 

ZP ZP z=p 
- = u, + Dz - X-G + k_,q 
at CX cs- 

(1) 

&I 
T 
Gt 

= kfl - k_,q (2) 

In eqn. 1 the tirst term on the right corresponds to mobile-phase flow (convec- 
tion) with velocity u (U = F/A0 where F is the flow-rate), and the second term 
corresponds to diffusion with diffusion constant D_ The movement of solute mole- 
cules back and forth between the flowing solvent (mobile phase) ami the inside of the 
heads (stationary phase) is described by the sorption and desorption rate constants, 
k, and k_ I_ At sorption-desorption equilibrium the concentrations C and B are equal 
so that eqn. 2 implies that the equilibrium constant K = k,/k_ I satisfies K = A,/& 
or K = VP/V,. The equilibrium constant K is not equal to the partition or distribution 
coefficient defined as I& = VJ Vi, where Vi is the volume inside the beads that is not 
gel matrix; however. Kd = KV,,/Vi_ The retention ratio R used by Gidding8 satisfies 
R = l/(! i- K-J. 

The initial layer at the top of the bed containing sample molecules is assumed 
to be sufficiently small so that it can be considered an instantaneous source (small 
zone)_ Thus, the initial conditions on 0 < _I- < fare 

p(_r,O) = S(_K - Iz) 

q&O) = 0 x f h (3) 

where S(s - h) is a Dirac delta function_ We remark that alternatively the instan- 
taneous source could have been included as a term a(_~ - /z) 6(t) in eqn. I. 

Diffusion of molecules into the solvent above the top of the bed is possible; 
however, if the flow-rate is positive, then these molecules would soon be moved into 
the bed by the solvent flow. The partiai differential equation for the mobile phase 
molecule density A,C above the top of the bed (Iz < s <f) involves flow and diffusion 
(A, is the cross-sectional area of the column)_ By dividing this equation by the initial 
number of molecules I, we obtain the following differential equation for the prob- 
ability density p&t): 

(4) 

Above the bed the velocity ur of the solvent is F/A, and the diffusion constant 
of the molecules is D,. Since no molecules can move above the top of the solvent, 
the molecular current is zero there; that is, 
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_ 

rrg tf;r) + D, E V;t) = 0 (3 

for c 2 0. 
The number of molecules and the current must be continuous at the top of the 

bed so that 

p(h_,r) = p(hi,z) 

. 
udh-,r) i- D, g (h’,r) = up(h-.t) f L&h-& (6) 

for t 3 O_ Precise incorporation of die&ion below the bottom of the bed would 
require a differential equation like eqn_ 4 for the solute molecules beIow the bed and 
matching conditions similar to eqn_ 6 at the bottom of the bed. I; is more convenient 
to assume that the elution profile is measured at the bottom of the bed (x = 0) and 
that there is an absorber (sink) there. This corresponds to A,C(O,t) = 0 or 

P(W) = 0 (7) 

for t 2 0. This condition is reasonable since the rate of movement by flow of solute 
molecules in the solution below the bed is large compared with the rate of movement 
of these molecules in the bed. This model is also applicable to affinity cbromatogra- 
phy in which ligands, covaIentiy bound to the surfaces of impenetrable beads, interact 
monovalently with solute molecules- In that case the equilibrium and rate constants 
describe the binding reaction_ 

THE M0MEN-B OF THE ELUTION PROFILE 

Rather than attempting to solve the initiai-boundary value problem (eqns._ I- 
7): we show how the model cam be used to obtain ordinary differential equations with 
boundary conditions for the mean and variance of the passage time. The mean 
passage time T1 (x) is defined to be the mean time for molecules starting in the initial 
layer to move past a position x6.xo-1s_ Th e mean elution time A4, = T1 (0) (also G&XI 
the mean residence time or the mean retention time) is the mean time for molecules to 
move out of the bottom of the bed_ De&nitions of b&her moments are similar_ The 
fraction of molecules per unit time moving by position .x in the bed at time t is the 

current up(_.,r) i D~(_x,t). Thus, thejth moment of the passage time at position x is 

defined to be 

cc 

Tj(x) = + D~(x,t) dt 0 1 (8) 
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Mean passage lime 
Direct integration with respect to t on the interval (0,az) of 1 times and t times 

the partial differential equations, and use of the boundary conditions, leads to the 
following boundary value problem for TI (x): 

Dd2G _&z& 
d_G -(I +K) O<x<h 

The bound_ary conditions in eqns. 5-7 convert to 

(10) 

TJIt’) = T,(h_), 
dTx 

fI-+Q- dr @+I 
dTx = -&h-) 

me solution for 0 ,( _r < h of the boundary value problem (cqns. 9 and 10) 

Tl(X) = (1 i- K) _ e-=k’D) + 2 (I 
1 I [l _ e-“~U - W’,] 

so that the mean eiution time is 

(1 - eer) 

1 
+ (1 - e-3 (1 

P r1 

-e -uk.!D )x 

(11) 

e” - ‘2) (12) 

where r = d/D, rl = qh,fD, and rz = nf/D,_ 

Variance of the passage time 

If the differential equations 4-1 and 2 are multiplied by t2 and integrated with 
respect to t on (O,CC), then the boundary value problem for the variance S(s) = T,(x) 
- T,(x)~ is 

d2S dS 
DGi-~== -20 

(13) 



From the solution -S(x) the variance of the elution time is 

2 WI s, = S(0) = k_,u 

[ 
1 - (1 - e_‘)fr 1 

t 
2(1 + K)‘h’ 

I- li [ 
1 f 2e-’ - 2 

(1 - e-‘) 

I- 
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(14) 

_ (l-e-“) 

2r 1 
2e-’ 1 

t &- (I - e-‘)‘(I _ e” - Q)= 

1 

Althou& the mean elution time (eqn. 12) depends only on the sorption-desorp- 
tion equilibrium constant K, the variance S, in eqn. 15 depends on both K and the 
desorption rate constant k _ r. Special cases of some of the equations in this section 
were obtained by Weisst6_ When diffusion is ignored (D = 0, D, = 0), then the mean 
and variance of the elution time are 

itr, = (1 f Kj hjn, s, = xhj(k_,u) (16) 

Moments of the ehttion volume 

An dution profile is a graph of the number of molecules eluted from the 
bottom of the bed as a function of time or of eluted solvent volume. For positive flow 
F, th,t mean ehrtion vohtme V, is defined to be the total volume of solvent eluted up to 
the meanelutioc time MC,. Since K = YJY,, and the voh.une eiuted up to time t is V 
= Fr = V,-,@h, the following mean elution volume expression can be found from 
eqn. 16 when diffusion is neglected: 

Similarly the variance found from eqn. 16 when diffusion is neglected is 

I+‘; - F'S, = WV, K/k_, W? 

Note *&at the mean elution volume V, does not depend on the flow-rate F, but 
the variance increases as the flow-rate increases. Eqn. 17 is formally identical to a stan- 
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dard chromatography equation; however, the V, in the standard equation is the peak 
of the elution profile instead of the mean. (See later for further comparison with the 
local equilibration and elution profile peak approach). 

Tltick sample layer 
If the effects of diffusion can be neglected and T is the thickness of the initial 

layer of sample, then the means and variances given by eqns. 16-18 become 

M, = (1 f K)h/u i- T/(24 

Se = ‘Khj(k _ ,u) f T2i( 12~~) 

v, = v(J + VP f VJ/(2h) 

(19) 

(20) 
W, = 2FV,,Kjk_ 1 A- V,‘T’~(12h’) 

Third central moment 
The methods above can be used to calculate higher moments, but the results 

are complicated. Negiecting d$f%sion we find that the third central moment (i.e., 
around the mean) of the elution profile as a function of time is 

and as a function of volume is 

U, = 6F’ V&/k’_ r (22) 

Since the third central moment of the time for a layer of thickness T to enter the 
bead is zero, eqns. 21 and 22 hold for both thin and thick sample layers. When the 
flow-rate is such that diffusion is negligible, the moment coefficient of skewness for a 
thin sample layer is 

G, = UJ W,“!’ = S(F/uC, V,-,)112 (23) 

Thus, the skewness increases as the Bow-rate F increases, as noted in numerical 
soM.ions”_ 

RELATION TO PLATE HEIGHT THEORY 

Since plate height terminoIogy is stii1 widely used, we now present and discuss 
our results in that notation. The spreading of solute molecules from a thin initial layer 
to a bell-shaped distribution along the bed at later times is called dispersion or zone 
spreading or band broadening. The causes of dispersion are the sorption-desorption 
kinetics (also called non-equilibrium effects) and diE&ion in the mobile phase. Here 
we use diffusion (in the mobile phase) as a general term which includes long3udinal 
diffusion (molecular diffusion) and diffusion-related flow phenomena such as eddy 
diffusion and velocity profile heterogeneity_ 
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The relative dispersion about the mean of the elution profile is the variance S, 
divided by the square of the mean M,_ if difFusion above the bed is negligibly small, 
then from eqns. 12 and 1.5 we obtain 

s 
-+= 

ar 

I - (1 - e-yjr + 

2[I i 2e-’ - 2(1 - e-?/r - (I - ew23/2r] 

ni,- r[I - (1 - e-‘)/r]’ 
(24) 

where r = HhjD and 

a = ~J(Dr'[h'k_,(I + K)q (25) 

The two terms in eqn. 24 correspond to the two causes of dispersion described above. 
The height equivalent to a theoretical pIate has been shown’ -s-1 ’ to satisfy H = 

hS,:M,‘- Division by the bead diameter d, leads to the reduced plate height 

which is dimensionless_ Using eqn. 24, it can be shown that A equals 2(a + l/3) kjdp 

when f- = 0, that it decreases to a minimum when r % fi and that if then increases_ 
Near and beyond the minimum, a good approximation is 

(27a) 

where Y = rdJh = z@JD is a dimensionless quantity ceiled the reduced velocity. For 
typicai parameter values and typical reduced veiocities (V 5 O-01), the second term in 
eqn, 27a is entireIy negligible so that 

fi x 2jF i- a(hjdpr’ I- (2W 

Eqn. 27a is similar to the van Deemter equation’.1g giv-en by 

h = B/r i A f Cv (28) 

where the constants B, A and C are associated with axial mokcular diffusion, eddy 
diffusion, and non-equib-brated mass transfer. However, eqo. 28 invoives three unde- 
termined parameters, B, A and C, whereas eqn- 27a has only one undetermined 
parameter, x_ Many equations similar to eqn- 28 have been derived for the reduced 
plate hei$rt’G23 _ f or examptk, the Knox eqttation23 is - 

h = B/v + Av’j3 + Cv -. (29) 

Aithough eqn. 24 is vahd for v 2 0, eqns. 27-29 are only reasonable near and beyond 
the rninnnnrn, since the plate height should be a constant when Y = 0 and should not 
be infinite. 

Plots of log ii against fog Y have been obtakxi experimentaHy’.“*“3_ Using a 
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Fig. 1. Log-Log plot of reduced plate height h as a function of reduced veiocity F. (-A-) are the experi- 
mental data points (ref_ 21). The RMS error of the fits using the van Deemter equation (cqn. ZS) and the 
Knox equation (cqn. 29) are viinuaIIy identical (dashed tine). The best least-square parameter sets (A. B. C) 
are (0.83, 1.86.0.17) for eqn_ 28 and (0.62, 2.03.0.13) for eqn_ 29. The best least-squue fit of eqn. 27b is 
shown by the solid line. The curve was generated using the experimental value h,kf, = 3837 and determin- 
ing ol(h/ci,)’ = 0.26 by a least-squares fit. 

data set from Fig. 7 in ref. 21, we have determined the best fits of eqns. 27b, 28 and 29. 
The best least-square fits of the two empirical equations (28 and 29) are virtually 
identical in terms of root mean square error, although the parameter sets (A, B, C) 
that produce the fits are of course dif%erent for the two equations. Our eqn. 27b, 
derived from a basic chromatography model, gives a somewhat poorer fit, but it has 
only one adjustable parameter. 

Interestingly, the best least-square parameter B in the Knox equation turns out 
to be 2, as predicted by our result. The strikingly close agreement is probably to some 
extent fortuitous. Nevertheless, the agreement suggests that the main reason for the 
difference between the data and the prediction based on eqn_ 27b is the absence of 
velocity profile effects. As a check on this, we added a term Av~:~ onto eqn. 27b, thus 
producing a two-parameter equation, and obtained a fit that was slightly better (in 
terms of RMS error) than that based on the Knox equation. One way of looking at 
these results is to regard eqn_ 27b as providing a partial theoretical basis for the Knox 
equation, pinning down two of the three adjustable parameters in that equation to 
values determined by a molecular model. 

Desorption rate constant related to bead diameter 

Let r;il be the reduced velocity at which the miniium of h (or log iz) occurs. 
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Since the minimum of eqn. 23 occurs when r x m, where ‘j: is given by eqn. 25, we 
obtain 

From various plots of log h against log Y, it has been observedz3 that V, is con- 
sistently cu. 3_ Thus, eqn. 30 predicts that the desorption rate constant k_ i is inverseiy 
proportional to the square of the bead diameter d,_ 

THE SIGNIFICANCE OF DIFFUSION 

From eqns. 24 and 27 we see that diffusion contributes more to dispersion for 
low flow-rates and that non-equilibration of mass transfer contributes more for high 
flow-rates- For many chromatography systems an intermediate flow-rate is chosen so 
that the axial dispersion is minimized2’“3. Here we choose a flow-rate (higher than 
the dispersion minimizing flow-rate) so that the effects of diffusion are negligible_ This 
procedure alIows us to use the information contained in the observed dislxxsion to 
estimate the sorption and desorption rate constants_ 

The expressions for the mean and variance of the elution time are particularly 
simple when the- contribution of terms corresponding to diffusion are sufficiently 
small so that they can be neglected_ From eqn_ 12 we find the following bound for 
large flow-rate on the relative difference between the mean elution times with and 
without diffusion 

(31) 

For large flow-rate F the reiative magnitude of the terms corresponding to diffusion in 
eqn. 1.5 for the variance are given in the following inequality: 

For positive Kit is cIear that the contributions to the mean eiution time and to 
the variance of the diffusion-related terms can be neglected if the flow-rate (and hence 
U, nl, r and rr) is chosen large enough so that the right sides of eqns. 31 and 32 are small- 
Note that the above inequalities are also measures of the reiative contributions due to 
diffusion for the mean and variance of the elution volume_ Calculations using typical 

parameter values reveal that the contribution of diffusion above the bed is much less 
than the contribution of diffusion in the bed and that diffusion terms have a larger 
influence on the variance than on the mean. 

Local eqzzilibrution and the elution profire peak 

The widely used equation for the e!ution prome peak can be obtained by 
_ - - &summg Iocal equilibration and negligible diffusion. If it is assumed that the mobile 
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phase and stationary phase molecules equilibrate locally for each fixed _r, then B(~,r,t) 
= C(_TJ) so that Q(XJ) = Kp(x,t). In this case the sum of eqns. I and 2 reduces to 

ZP I1 zp D t?‘p 

z 
=--+------_ 

1 + K&r 1 f K i%- (33) 

The solution of the initial value problem for - M < _r < 0~1 consisting of eqn. 33 and 
p&O) = 8(x - h) is 

p(_u,r) = [4nDr (1 + K)]-‘I’ exp 
[ 

-[A - _r - zlt/( 1 f K)]’ 

4 Df/(l + K) 1 (34) 

This solution has the form of a Gaussian distribution function which moves and 

spreads simultaneously. The elution protile up(O,t) + D z(O,t) is not a Gaussian 

distribution as a function oft, and it is not symmetric around the peak which occurs 
at 

T(peak) = (I + KY’ (I - g- + 2 i- ___) 
11 

(35) 

When diffusion is negligible (I/r < l), the elution profile is approximately b[lz - 
s - uf/( 1 + _K)] and the peak is approximately equal to the mean (eqn. 16). Hence the 
corresponding formula V(peak) = V,, f VP assumes both local equilibration and 
negligible dif%usion while the formula V. = V, i VP for the mean elution volume 
assumes only that diffusion is negligible. The local equilibration assumption is usually 
unreenable since it implies that the variance is approximately zero. Differences 
between the peak and the mean are discussed further in ref. 5. 

DISCUSSION 

We outline a procedure for determining the sorptiondesorption equilibrium 
constant K, the sorption rate constant k, and the desorption rate constant k_, by 
liquid column chromatography. This procedure works for both small-zone and large- 
zone chromatography. 

(1) Use eqns. 31 and 32 with estimates for the parameter values to choose the 
flow-rate F large enough so that the contributions of diffusion are negligible. 

(2) Find the void volume VO experimentally by using the mean elution volume 
as I’,, when a weaker solvent or a non-retained larger molecule is run through the 
Coltimrl’. 

(3) Find values of the mean volume V, and the variance IV, of the elution 
profile by running the sample through the column. 

(4) Calculate the equilibrium constant K from 

by using the values determined in steps 2 and 3. The equations in this step are 
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obtained from eqn_ 20. Eqns- 19 would be used if the elution profile -den_ _siven as a 
function of time. The term in eqn. 36 involving the sample thickness Tcan be otitted 
if *he volume measurement is started when half of the sample has entered the column_ 
Now calculate the desorption rate constant from 

k-, = 2F VoKj[W, - v;T~/(lzz’)~ (37) 

The term involving the sample thickness T is always included but may be negligibly 
small if T is s_mall. Of course, the sorption rate constant can now be found from k, = 
Ar_, K 

(5) Use the values calculated above in eqns. 31 and 32 to verify that the contri- 
butions of diffusion were indeed negligible. 

We emphasize that the sorption and desorption rates can be found by using the 
first and second moments, but only the equilibrium constant can be found from the 
first moment- The third central moment does not yield any new information; how- 
ever. the observed third central moment can be used in eqn. 22 to check the estimates 
ofXandk_, obtained from the first two moments_ 

If the only constant of interest is the equilibrium constant (and not the rate 
constants), then the most accurate method of determining this value might he to 
choose a chromatography system so that the dispersion (band width) is mim- 
mbed” .23_ The dispersion can be made quite small by using optimum bed particle 
sizes, colnmn diameters and lengths. flow-rates, pressures, sample diiutions and 
sample sizes in high-performance liquid chromatographyz3_ In this case the mean and 
peak of the elution pro& would essentialiy coincide so that the equilibrium constant 
couId be easily estimated. We emphasize that if the goal is to also estimate the rate 
constants for movement in and out of the beads, then the procedure outlined at the 
beginning of this section should be followed. Estimates of the sorption and desorp- 
tion rate constants are necessary for the quantitative analysis of more complicated 
systems that include chemical reaction6.‘. 
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