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SUMMARY

A model for column chromatography that includes non-equilibrated mass
transfer, diffusion, and generalized boundary conditions at the top of the column is
solved by the method of moments. The theory predicts that as the macroscopic
velocity u becomes very small, the plate height approaches a constant (rather than
diverging as u~ ). As u increases, the plate height drops to a2 minimum and then
increases. We show that the past assumptions that mass transfer and various types of
diffusion contribute additively to the plate height, hold only at or beyond the min-
imum. We show further that our expression fits observed data with only a single
adjustable lumped parameter. The parameter contains the mass transfer rate k_, for
moving out of a bead. The data fit, as well as an analytical approximation that we
derive for the position of the minimum, provides a relation between &_, and bead
particle size (d,) and consequently between 4, and profile dispersion. Conditions
under which the peak of the elution profile is a good approximation to the mean are
described. For a suitably chosen flow-rate, the mass transfer rates can be estimated
from the observed dispersion in the elution profile.

INTRODUCTION

The use of column chromatography as a quantitative tool for molecular weight
determination' and chemical reaction characterization®'> has increased continuously
and rapidiy during the past decade. However, the basis of its validity for quantitative
thermodynamic (and perhaps kinetic*) studies is uncertain, resting largely on assump-
tions that local equilibrium is established instantaneously>, and that the contribution
of chemical kinetics to elution profile broadening can be made to dominate the effects
of diffusion and other none-equilibrium processes®. A general assessment of the range
of validity of these assumptions has been difficult because of the formidable problems
in obtaining analytic solutions for the elution profile, even when the mathematical
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system: is linear. In this paper we extend a basic non-equilibrium model of chromato-
graphy and develop the experimental implications. This and the companion paper®,
which includes heterogeneity and non-linear mass transfer, will provide a useful foun-
dation for generalization to more complex systems involving chemical reactions®’.

Of the many important mathematical contributions to the theory of liquid
column chromatography (e.g.. refs. 2 and 8, and references cited therein), those most
similar to the model presented here are the non-equilibrium random walk model of
Giddings and Eyring®® and the partial differential equations formulation of
Thomas!?. Our method of solution, involving explicit equations for the moments of
the profile, is similar to that used by other authors (refs. 8 and 11-13, and references
cited therein). Here we extend these methods by generalizing the boundary conditions
at the top of the column and by pursuing the numerical consequences of the model.

After developing and solving the model, we study plate height (proportional to
the dispersion in the profile divided by the square of the mean) as a function of the
convection velocity u. At very low u, the plate height approaches a constant (rather
than diverging as #~ ') which is explicitly siven by the theory. As u increases, the plate
height passes through a minimum in the usual way, and then increases. A good non-
linear least-squares fit of our predicted equation to data is obtained with only one
adjustable parameter. An analytic approximation is obtained for this minimum which
relates the desorption mass transfer coeflicient to bead diameter.

Criteria on the flow-rate are given which guarantee that the effects of diffusion
on the means and variances can be neglected. A chromatography model which as-
sumes local equilibration of mass transfer kineiics is described. When diffusion is
negligible, this model yiclds a widely used formula for the peak of the elution profile.
Identification of the assumptions required for its derivation provides a basis for
assessing its range of validity.

Implications of our analysis are discussed. A complete procedure is outlined
for estimating the equilibrium constant and the rate constants for the sorption—
desorption kinetics from the mean and variance of the elution profile. Both the
equilibrium constant and the rate constants can be estimated from the mean and
variance, but only the equilibrium constant can be estimated from the mean.

A CHROMATOGRAPHY MODEL WITH DIFFUSION

We formulate an initial-boundary value problem which models a small-zone
chromatography experiment with a single type of molecule in the sample. We model
only non-gradient, elution chromatography with a constant temperature in the
column and a constant pressure on the solvent. Consider a column where x measures
the distance up from the bottom of the bed; x is & at the top of the bed and x is fat the
top of the solvent above the bed. Let ¥, be the void volume, i.e., the volume exterior
to the beads, and let ¥, be the volume interior to the beads that can be penetrated by
the macromolecules. Define the void cross-sectional area as 4, = V,/h and the
penetrable cross-sectional area as 4, = ¥ /h. The concentration (over 4,) of solute
molecules in the mobile phase is C(x,?) and the concentration (over A.) of molecules
in the stationary phase is B{x,?).

Using a conservation of mass approach on 0 < x < &, we have derived a
system of reaction—diffusion—convection partial differential equaticns for the density
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AyC (in units of molecules per unit column length) of solute molecules in the mobile
phase and the density 4B of solute molecules in the stationary phase. By dividing
these equations by the initial number of molecules J, the following partial differential
equations for the probability density p(x,f) for the mobile phase and ¢(x,7) for the
stationary phase are obtained:

ap ép &p

6[=u§+ ?—klp+k_1q )
cq I
&t - A'1.1’ A‘—lq . (2)

In eqn. 1 the first term on the right corresponds to mobile-phase flow (convec-
tion) with velocity u (u = FfA4, where F is the flow-rate), and the second term
corresponds to diffusion with diffusion constant D. The movement of solute mole-
cules back and forth between the flowing solvent (mobile phase) and the inside of the
beads (stationary phase) is described by the sorption and desorption rate constants,
k, and £ _,. At sorption—desorption equilibrium the concentrations C and B are equal
so that eqn. 2 implies that the equilibrium constant K = k,/k_, satisfies K = A_ /A,
or K = V_/V,. The equilibrium constant K is not equal to the partition or distribution
coefficient defined as K; = V_/V;, where V; is the volume inside the beads that is not
gel matrix; however., K; = KV,/V,. The retention ratio R used by Giddings® satisfies
R = 1/(1 + K).

The initial layer at the top of the bed containing sample molecules is assumed
to be sufficiently small so that it can be considered an instantaneous source (small
zone). Thus, the initial conditions on 0 < x < fare

p(x0) = o(x — h)
q(x,0) =0 xX#Fh (3)

where 8(x — #) is a Dirac delta function. We remark that alternatively the instan-
taneous source could have been included as a term 6(x — %) é(£) in eqn. 1.

Diffusion of molecules into the solvent above the top of the bed is possible;
however, if the flow-rate is positive, then these molecules would soon be moved into
the bed by the solvent flow. The partiai differential equation for the mobile phase
molecule density 4,C above the top of the bed (i < x < f) involves flow and diffusion
(A, is the cross-sectional area of the column). By dividing this equation by the initial
number of molecules I, we obtain the following differential equation for the prob-
ability density p(x,1):

)

Above the bed the velocity u, of the solvent is F/4, and the diffusion constant
of the molecules is D,. Since no molecules can move above the top of the solvent,
the molecular current is zero there; that is,
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llzptff)+qu fy=0 &)

forr > 0.
The number of molecules and the current must be continuous at the top of the
bed so that

o, = pth™,n
+ - cp ., _
wyp(h™ 0 + D, (h 0 = upth™ 1) + Da—x(h D 6)

for ¢+ > 0. Precise incorporation of diffusion below the bottom of the bed would
requir: a differential equation hike eqn. 4 for the solute molecules below the bed and
matching conditions similar to egn. 6 at the bottom of the bed. i is more convenient
to assume that the elution profile is measured at the bottom of the bed (x = 0) and
that there is an absorber (sink) there. This corresponds to 4,C(0,7) = 0 or

p0,) =20 @)

for ¢t > 0. This condition is reasonable since the rate of movement by flow of solute
molecules in the solution below the bed is large compared with the rate of movement
of these molecules in the bed. This model is also applicable to affinity chromatogra-
phy i which ligands, covalently bound to the surfaces of impenetrable beads, interact
monovalently with solute molecules. In that case the equilibrium and rate constants
describe the binding reaction.

THE MOMENTS OF THE ELUTION PROFILE

Rather than attempting to solve the initial-boundary value problem (egns. 1-
7)., we show how the model can be used to obtain ordinary differential equations with
boundary conditions for the mean and variance of the passage time. The mean
passage time T, (x) is defined to be the mean time for molecules starting in the initial
layer to move past a position x®-'#-!5_ The mean elution time M, = T, (0) (also called
the mean residence time or the mean retention time) is the mean time for molecules to
move out of the bottom of the bed. Definitions of higher moments are similar. The
fraction of molecules per unit titne moving by position x in the bed at time ¢ is the

c ) . . .. .
current up{x,t) + Dé(x,t). Thus, the jth moment of the passage time at position x is
defined to be

Tix) = f t’[up(t D+ D (r t)] 8)
4 .
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Mean passage time

Direct integration with respect to 7 on the interval (0,00) of 1 times and ¢ times
the partial differential equations, and use of the boundary conditions, leads to the
following boundary value problem for 7, (x):

a7, arT
D‘dxz-ruldxl 0 hA<x<f
)]
2
D%‘—+u%=—(l+[€) O0<x<h
The boundary conditions in eqns. 5-7 convert to
=0  Sloy=o
(10)
T\(h7) = Ty(n7), (1 + K) (11") =

The solution for 0 < x < & of the boundary value problem (eqns. 9 and 10)

1

[1 —e7=t = B (11)

h— D ) b )
(x)=(0 + K) 1 u x ;2_(6—“/9 — e—ub-D)]+ u—;(l — emukDy

so that the mean elution time is
1 —e™ " 1 —e” -
M= T, = f{mK)[l _d=e )] TR Gl )} (12)
u r ry

where r = un/D, r, = uh/D, and r, = u,fi/D,.

Variance of the passage time

If the differential equations 4, 1 and 2 are multiplied by r* and integrated with
respect to ¢ on (0,o0), then the boundary value problem for the variance S(x) = 7,(x)
— T(x)%is

2 d 2
p, &3 3:—20,(‘”‘) h<x<f

tdx2 + ot g dx

(13)

da’s ds dTl ZK
DF.;.M.&- O<x<th
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- _ das
S(f) =0,85&7) = S7), E‘;(O) =0
(14)
ds  _ as . .. 2K dM
a}(k )=« +K)—d_—€(h )+k—1 ax ™)
From the solution S(x) the variance of the elution time is
2K
S. = S(0) = —— [1 —a - e")/r]
k_ju
21 + KK et e
L2 {()z[l+2e_,_2(1 e (—e )]
ru r 2r
(13)
LA {()h—[l e - r:][(1 —e 2e‘]
ryu r
i 2 - =z
+ ==l -yl —e*" "
r i’

Although the mean elution time (eqn. 12) depends only on the sorption—desorp-
tion equilibrium constant K, the variance S, in eqn. 15 depends on both X and the
desorption rate constant k_,. Special cases of some of the equations in this section
were obtained by Weiss!®. When diffusion is ignored (D = 0, D, = 0), then the mean
arnd variance of the elution time are

M. = (1 + K hju, S. = 2Khj(k _,u) 16)

Moments of the elution volume

An clution profile is a graph of the number of molecules eluted from the
bottom of the bed as a function of time or of eluted solvent volume. For positive flow
F, the mean elution volume ¥, is defined to be the total volume of solvent eluted up to
the mean ®elutior time M_. Since K = V /¥, and the volume eluted up to time z1s ¥
= FI = V,utf/h, the following mean clution volume expression can be found from
eqn. 16 when diffusion is neglected:

Ve=Vo + V, a7
Similarly the variance found from eqn. 16 when diffusion is neglected is
W, = P’S, = 2FV, Kfk_, ) . (18)

Note that the mear elution volume ¥, does not depend on the flow-rate F, but
the variance increases as the flow-rate increases. Eqn. 17 is formally identical to a stan-
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dard chromatography equation; however, the ¥ in the standard equation is the peak
of the elution profile instead of the mean. (See later for further comparison with the
local equilibration and elution profile peak approach).

Thick sample layer
If the effects of diffusion can be neglected and T is the thickness of the initial
layer of sample, then the means and variances given by eqns. 16-18 become

M, =1 + K)hfu + T/Q2u)
(19)
S. = 2Khj(k_u) + T2 /(127)

V.= Vo + V, + VoT/2h)
(20)
W, = 2FV Klk_, + V,2T3/(12h3)

Third central moment

The methods above can be used to calculate higher moments, but the results
are complicated. Neglecting diffusion we find that the third central moment (i.e.,
around the mean) of the elution profile as a fuaction of time is

N, = 6 Khj(k%, u) 3
and as a function of volume is
U, = 6F2V KjkZ, ) (22)

Since the third central moment of the time for a layer of thickness 7 to enter the
bead is zero, eqns. 21 and 22 hold for both thin and thick sample layers. When the
flow-rate is such that diffusion is negligible, the moment coefficient of skewness for a
thin sample layer is

G.l = U¢/We3.’2 = 3(I:‘/‘Zkl I/O)“2 (23)

Thus, the skewness increases as the flow-rate F iacreases, as noted in numerical
solutions!”.

RELATION TO PLATE HEIGHT THEORY

Since plate height terminology is still widely used, we now present and discuss
our results in that notation. The spreading of solute molecules from a thin initial layer
to a bell-shaped distribution: along the bed at later times is called dispersion or zone
spreading or band broadening. The causes of dispersion are the sorption—desorption
kinetics (also called non-equilibrium effects) and diffusion in the mobile phase. Here
we use diffusion (in the mobile phase) as a general term which includes longitudinal
diffusion (molecular diffusion) and diffusion-related flow phenomena such as eddy
diffusion and velocity prefile heterogeneity.
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The relative dispersion about the mean of the elution profile is the variance S,
divided by the square of the mean A _. If diffusion above the bed is negligibly small,
then from egns. 12 and 15 we obtain

S. ar +2[I + 267" — A1 —e Yr — (1 — e )2r]
M2 1 — (1 —e"yr il — (1 — e )P

(24)

where r = uh/D and
e = 2KD/[RPk_ (1 + K)*] 25

The two terms in eqn. 24 correspond to the two causes of dispersion described above.
The height equivalent to a theoretical plate has been shown!-3-12 to satisfy H =
hS./M ?. Division by the bead diameter 4, leads to the reduced plate height

h = hSJ(d,M.>) (26)

which is diraensionless. Using egn. 24, it can be shown that & equals 2(« + 1/3) i/dp

when » = O, that it decreases to a mimimum when r & /2/2 and that if then increases.
Near and beyond the minimum, a good approximation is

= 2/v + xhjd, + a(hid)?¥ (27a)

where v = rd fh = ud /D is a dimensionless quantity called the reduced velocity. For
typical parameter vahies and typical reduced velocities (v = 0.01), the second term in
eqn. 27a is entirely negligible so that

B 2/v + alhidy v (27b)
Eqn. 27a is similar to the van Deemter equation®-!® given by

h=Biv+ A+ Cv (28)

where the constants B, 4 and C are associated with axial motlecular diffusion, eddy
diffusion, and non-equilibrated mass transfer. However, eqn. 28 involves three unde-
termined parameters, B, 4 and C, whereas eqn. 27a has ounly one undetermined
pararneter, x. Many equations similar to eqn. 28 have been derived for the reduced
plate height®®23_ For example, the Knox equation?’ is

h = Bfv + Av® + Cv - (29)
Although eqn. 24 is valid for v = 0, eqns. 27-29 are only reasonable near and beyond
the minimum, since the plate height should be a constant when v = 0 and skould not
be infinite.

Data fitting
Plots of log & against log ¥ have been obtained experimentaliy!-2123_ Using a
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Fig. 1. Log-Log plot of reduced plate height £ as a function of reduced velocity v. (-A-) are the experi-
mental data points (ref. 21). The RMS error of the fits using the van Deecmter equation (eqn. 28) and the
Knox equation (eqn. 29) are virtually identical (dashed linc). The best least-square parameter sets (A, B, C)
are (0.83, 1.86. 0.17) for eqn. 28 and (0.62, 2.03, 0.13) for eqn. 29. The best least-square fit of eqn. 27b is
shown by the solid line. The curve was generated using the experimental value h/d, = 3837 and determin-
ing a{h/d)* = 0.26 by a least-squares fit.

data set from Fig. 7 in ref. 21, we have determined the best fits of eqns. 27b, 28 and 29.
The best least-square fits of the two empirical equations (28 and 29) are virtually
identical in terms of root mean square error, although the parameter sets (4, B, C)
that produce the fits are of course different for the two equations. Our egn. 27b,
derived from a basic chromatography model, gives a somewhat poorer fit, but it has
only one adjustable parameter.

Interestingly, the best least-square parameter B in the Knox equation turns out
to be 2, as predicted by our result. The strikingly close agreement is probably to some
extent fortuitous. Nevertheless, the agreement suggests that the main reason for the
difference between the data and the prediction based on eqn. 27b is the absence of
velocity profile effects. As a check on this, we added a term Av'/3 onto eqn. 27b, thus
producing a two-parameter equation, and obtained a fit that was slightly better (in
terms of RMS error) than that based on the Knox equation. One way of looking at
these results is to regard eqn. 27b as providing a partial theoretical bzsis for the Knox
equation, pinning down two of the three adjustable parameters in that equation to
values determined by a molecular model.

Desorption rate consiant related to bead diameter
Let v, be the reduced velocity at which the minimum of 4 (or log /i) occurs.
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Since the minimum of eqn. 24 occurs when r =~ /2/x, where « is given by eqn. 25, we
obiain

KDy,

s T eE

(30)

" From various plots of log / against log v, it has been observed?® that v, is con-
sistentiy ca. 3. Thus, eqn. 30 predicts that the desorption rate constant & _, is inversely
proportional to the square of the bead diameter d,,.

THE SIGNIFICANCE OF DIFFUSION

From eqns. 24 and 27 we see that diffusion contributes more to dispersion for
low flow-rates and that non-equilibration of mass transfer contributes more for high
flow-rates. For many chromatography systems an intermediate flow-rate is chosen so
that the axial dispersion is minimized?* 3. Here we choose a flow-rate (higher than
the dispersion minimizing flow-rate) so that the effects of diffusion are negligible. This
procedure allows us to use the information contained in the observed dispersion to
estimate the sorption and desorption rate constants.

The expressions for the mean and variance of the elution time are particularly
simple when the contribution of terms corresponding to diffusion are sufficiently
small so that they can be neglected. From eqn. 12 we find the following bound for
large flow-rate on the relative difference between the mean elution times with and
without diffusion

1
r, (1 + K)

M, — (1 + K)aju
(1 + K) hiu

31

1
<=+
r

For large flow-rate F the relative magnitude of the terms corresponding to diffusion in
eqn. 15 for the variance are given in the following inequality:

S1%”/&—_111[(1+K)2]+(1+K)+ ‘] (32)

r Ku r rry 22

S. — 2Khj(k_ )
2Khfik _ u)

For positive K it is clear that the contributions to the mean elution time and to
the variance of the diffusion-related terms can be neglected if the flow-rate (and hence
u, u,, rand ry)ischosen large enough so that the right sides of eqns. 31 and 32 are small.
Note that the above inequalities are also measures of the relative contributions due to
diffusion for the mean and variance of the elution volume. Calculations using typical
parameter values reveal that the contribution of diffusion above the bed is much less
than the contribution of diffusion in the bed and that diffusion terms have a larger
influence on the variance than on the mean.

Local equilibration and the elution profile peak
The widely used equation for the elution profile peak can be obtained by
assuming local equilibration and negligible diffusion. If it is assumed that the mobile
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phase and stationary phase molecules equilibrate locally for each fixed x, then B(x,r)
= C(x,0) so that g(x,?) = Kp(x,?). In this case the sum of eqns. 1 and 2 reduces to

ép uwu ¢cp D &p f2y
ét 1+ Kéx "1+ Kéx2 22

The solution of the initial value problem for — oc < x < oc consisting of egn. 33 and
p(x,0) = 6(x — h)is

-
p(x,0) = [AxDt (1 + K)]™¥? exp (G4

4 Di/(1 + K)

This solution has the form of a Gaussian distribution function which moves and
. . ~ c, . .
spreads simultaneously. The elution profile up(0,r) + D :?(O,t) is not a Gaussian
c

distribution as a function of ¢, and it is not symmetric around the peak which occurs
at

d—- =+ 5 + .-2) 33)

(1 + KA 7 91
ST P

When diffusion is negligible (1/r < 1), the elution profile is approximately é[s# —
X — utf(1 + K)] and the peak is approximately equal to the mean (eqn. 16). Hence the
corresponding formula V(peak) = V, + V,, assumes both local equilibration and
negligible diffusion while the formula V, = V¥, + ¥, for the mean elution volume
assumes only that diffusion is negligible. The local equilibration assumption is usually
unreasonable since it implies that the variance is approximately zero. Differences
between the peak and the mean are discussed further in ref. 5.

DISCUSSION

We outline a procedure for determining the sorption—desorption equilibrium
constant X, the sorption rate constant X, and the desorption rate constant A_; by
liquid column chromatography. This procedure works for both small-zone and large-

zone chromatography.
(1) Use eqns. 31 and 32 with estimates for the parameter values to choose the

flow-rate F large enough so that the contributions of diffusion are negligible.

(2) Find the void volume ¥, experimentally by using the mean elution volume
as ¥, when a weaker solvent or a non-retained larger molecule is run through the
column?.

(3) Find values of the mean volume ¥, and the variance W, of the clution
profile by running the sample through the column.

(4) Caliculate the equilibrium constant X from

K =V/Vo =1V. — Vo — VoT/Q2R)/V, (36)

by using the values determined in steps 2 and 3. The equations in this step are
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obtaired from egn. 20. Eqgns. 19 would be used if the elution profile were given as a
function of time. The term in eqn. 36 involving the sample thickness T can be o.nitted
if the volume measurement is started when half of the sample has entered the column.
Now calculate the desorption rate constant from

k_, = 2F V Ki[W_. — VZT?/(12h%)] 3N

The term involving the sample thickness T is always included but may be negligibly
small if T is small. Of course, the sorption rate constant can now be found from k; =
k_, K.

(3) Use the values calculated above in eqns. 31 and 32 to verify that the contri-
butions of diffusion were indecd negligible.

We emphasize that the sorption and desorption rates can be found by using the
first and second moments, but only the equilibrium constant can be found from the
first rnoment. The third central moment does not yield any new information; how-
ever, the observed third central moment can be used in eqn. 22 to check the estimates
of K and k_, obtained from the first two moments.

If the only constant of interest is the equilibrium constant (and not the rate
constants), then the most accurate method of determining this value might be to
choose a chromatography sysiem so that the dispersion (band width) is mini-
mized®!*3. The dispersion can be made quite small by using optimum bed particle
sizes, column diameters and lengths, flow-rates, pressures, sample dilutions and
sampile sizes in high-performance liquid chromatography?>. In this case the mean and
peak of the elution profile would essentially coincide so that the equilibrium constant
could be easily estimated. We emphasize that if the goal is to also estimate the rate
constants for movement in and out of the beads, then the procedure outlined at the
beginning of this section should be followed. Estimates of the sorption and desorp-
tion rate constants are necessary for the quantitative analysis of more complicated
systems that inctude chemical reaction®’.
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